Abstract
Ultrasensitive explosive sensors are significant in anti-terrorism and related environment issues. Herein, we proposed a novel boron-doped graphene (B-GE) modified glassy carbon electrode (GCE) applied as a simple, sensitive electrochemical high melting explosive (HMX) sensor. The morphology and structure features of B-GE were characterized. The electrochemical behaviors of HMX on the B-GE modified GCE were investigated by cyclic voltammetry (CV). Under the optimized conditions, CV was used for the quantitative detection of HMX, and the reduction peak current exhibited good linear dependence with the concentration of HMX in the ranges of 2∼20μM and 20∼100μM. The low detection limit (LOD) was calculated as 0.83μM (245.81ppb). Furthermore, the B-GE/GCE showed satisfactory repeatability, high selectivity and stability. The reduction reaction mechanism of HMX on B-GE modified electrode was explored by computational theoretical analysis. Additionally, the differences of the reduction mechanisms from nitroaromatic explosives were discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.