Abstract

The structural, electronic, and superconducting properties of B-doped cubic and hexagonal diamane (single layer diamond) were investigated based on the first-principles methods. B atom tends to stay in the substitutional site, and the most stable configuration is the structure with vertical B–B dimer. The formation energy of B-doped diamane is lower than the counterpart of pristine diamane indicating that B dopant can facilitate the synthesis of diamane. The configurations with vertical B–B dimers are semiconductors with tunable band gaps, which decrease with the B concentration increasing due to the interaction between B–B dimers. For example, the band gap of 3.125 mol% and 6.25 mol% B-doped cubic diamane is 1.82 eV and 1.44 eV, respectively. Moreover, configurations with meta-stable B distributions are metals, which have comparable superconducting transition temperatures with B-doped diamond (~4 K).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.