Abstract
AbstractThe treatment of mixing is still one of the major uncertainties in stellar evolution models. One open question is how well the prescriptions for rotational mixing describe the real effects. We tested the mixing prescriptions included in the Geneva stellar evolution code (GENEC) by following the evolution of surface abundances of light isotopes in massive stars, such as boron and nitrogen. We followed 9, 12 and 15 M⊙ models with rotation from the zero age main sequence up to the end of He burning. The calculations show the expected behaviour with faster depletion of boron for faster rotating stars and more massive stars. The mixing at the surface is more efficient than predicted by prescriptions used in other codes and reproduces the majority of observations very well. However two observed stars with strong boron depletion but no nitrogen enrichment still can not be explained and let the question open whether additional mixing processes are acting in these massive stars.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the International Astronomical Union
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.