Abstract

The disappearing inventory and minute natural abundance of <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sup> He gas necessitate the adoption of new technologies for the detection of neutrons. The exclusive source of <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sup> He on Earth is derived from the tritium stockpile, which decays to <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sup> He at a rate of 5.5% per year. Despite the low <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sup> He supply, and uncertain production rate in the future, this medium remains by far the most attractive for many applications. The DHS and DOD plan to equip major ports of entry with large area monitors, in an effort to intercept the smuggling of nuclear materials. The desired world deployment of such monitors alone could consume the entire <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sup> He supply, limiting the prospects of nuclear science and other applications that rely very heavily on <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sup> He-based detectors as well. Clearly, alternate neutron detection technologies must be developed. We propose a technology based on close-packed arrays of long aluminum or copper tubes (straws), 4 mm in diameter, coated on the inside with a thin layer of <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">10</sup> B-enriched boron carbide ( <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">10</sup> B <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</sub> C). A close-packed array of straw detectors offers a stopping power for neutrons equivalent to that of 2.68 atm of <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sup> He gas. In addition to the high abundance of boron on Earth and low cost of <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">10</sup> B enrichment, the boron-coated straw (BCS) detector offers distinct advantages over conventional <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sup> He-based detectors, including faster signals, short recovery time (ion drift), low weight, safety for portable use (no pressurization), and low production cost. The above are all critical for large detector deployments, as in portal monitoring, and for active interrogation applications, where fast signals can significantly improve performance. Furthermore, in imaging applications, the BCS high level of segmentation supports high count rates and parallax-free position encoding, both difficult to achieve in conventional <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sup> He pressure vessels. We review the use of the BCS detector in a variety of applications, pointing out its distinct advantages over conventional <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sup> He tubes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call