Abstract

Ternary boron carbon nitride (BCN) semiconductors have been developed as emerging metal-free photocatalysts for visible-light reduction of CO2, but the achieved efficiency is still not satisfying. Herein, we report that the CO2 photoreduction performance of a bulk BCN semiconductor can be substantially improved by surface engineering with CdS nanoparticles. The CdS/BCN photocatalysts are characterized completely by diverse tests (e.g., XRD, FTIR, XPS, DRS, SEM, TEM, N2 sorption, PL, and transient photocurrent spectroscopy). Performance of the CdS/BCN heterostructures is evaluated by reductive CO2 conversion reactions with visible light under benign reaction conditions. Compared with bare BCN material, the optimized CdS/BCN photocatalyst exhibits a 10-fold-enhanced CO2 reduction activity and high stability, delivering a considerable CO production rate of 12.5 μmol h–1 (250 μmol h–1 g–1) with triethanolamine (TEOA) as the reducing agent. The reinforced photocatalytic CO2 reduction activity is mainly assigne...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.