Abstract

Hyperdoping silicon nanocrystals (Si NCs) to a concentration exceeding the solubility limit of a dopant may enable their novel applications. Here, the successful hyperdoping of Si NCs with boron (B) and phosphorus (P) is demonstrated, which are the most important dopants for Si. Despite the hyperdoping, the diamond structure of Si NCs is hardly modified. There are both electrically active B and P in hyperdoped Si NCs. It is proposed that the hyperdoping is made possible mainly by the kinetics in the nonthermal plasma synthesis of Si NCs. Collision between Si NCs and B or P atoms and the binding energy of B or P at the NC surface are critical to the understanding on the differences in the doping efficiency and dopant distribution between B and P. B-hyperdoping-induced tensile stress needs to be taken into account in the investigation on the doping and oxidation of Si NCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.