Abstract
Boron neutron capture therapy (BNCT) is a potential cancer radiotherapeutic modality, which takes advantage of the neutron capture response that occurs when boron (10B) is struck by low-energy thermal neutrons, triggering a nuclear fission reaction that ultimately causes cell death. Because the fatal radiation is restricted to approximately a single cell diameter, only cells with significant boron accumulation that are in the neutron field will be destroyed. Tumor-targeted 10B delivery agents are an essential component of BNCT. Currently, two low molecular weight boron-containing compounds, sodium mercaptoundecahydro-closo-dodecaborate (BSH) and borylphenylalanine (BPA), are mainly used in BNCT. Although both have suboptimal tumor selectivity, they have shown some therapeutic effect in patients with high-grade gliomas and several other kinds of tumors. In order to improve the efficacy of BNCT, significant effort has been devoted to developing new boron delivery agents that possess better uptake and favorable pharmacokinetic characteristics for clinical use. This review focuses on various boron delivery agents that have been developed over the past 40 years, including boron-containing amino acids, boron-containing compound conjugated-nucleosides, porphyrin derivatives, peptides, monoclonal antibodies, and different types of nanomaterials for 10B delivery. The principles underlying BNCT and the clinical trials with BNCT are briefly introduced in the first part of this review. In the second part, we provide a detailed overview of various boron delivery agents and discuss their merits and limitations. Additionally, the preclinical outcomes of these agents are included in this review and the most promising delivery agents are highlighted and compared. In summary, this article provides an overview of boron delivery agents, and critically analyzes their clinical prospects, from the view of medicinal chemists and nuclear medicine physicians.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.