Abstract
Boron is in high demand in many sectors, yet there are significant flaws in current boron resource utilization. This study describes the synthesis of a boron adsorbent based on polypropylene (PP) melt-blown fiber using ultraviolet (UV)-induced grafting of Glycidyl methacrylate (GMA) onto PP melt-blown fiber, followed by an epoxy ring-opening reaction with N-methyl-D-glucosamine (NMDG). Using single-factor studies, grafting conditions such as the GMA concentration, benzophenone dose, and grafting duration were optimized. Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray diffraction (XRD), and water contact angle were used to characterize the produced adsorbent (PP-g-GMA-NMDG). The PP-g-GMA-NMDG adsorption process was examined by fitting the data with different adsorption settings and models. The results demonstrated that the adsorption process was compatible with the pseudo-second-order model and the Langmuir model; however, the internal diffusion model suggested that the process was impacted by both extra- and intra-membrane diffusion. According to thermodynamic simulations, the adsorption process was exothermic. At pH 6, the greatest saturation adsorption capacity to boron was 41.65 mg·g-1 for PP-g-GMA-NMDG. The PP-g-GMA-NMDG preparation process is a feasible and environmentally friendly route, and the prepared PP-g-GMA-NMDG has the advantages of high adsorption capacity, outstanding selectivity, good reproducibility, and easy recovery when compared to similar adsorbents, indicating that the reported adsorbent is promising for boron separation from water.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.