Abstract

Abstract The singlet gerade states of the hydrogen molecule are strongly affected by the breakdown of the Born–Oppenheimer approximation. This leads to strong non-adiabatic coupling resulting in large changes of the energies and lifetimes of the quantum levels compared to the values obtained in the Born–Oppenheimer or even the adiabatic levels of approximation. The non-adiabatic calculations of Quadrelli, Dressler, and Wolniewicz (1990) [7] (hereinafter QDW) for the three highest vibrational levels (υ = 44, 45, and 46) of the EF 1Σg+ state of D2 predicted an enormous increase of the lifetimes upon excitation of just one quantum of rotational motion. However, although our experimental results for these levels just below the n = 2 dissociation limit do show a strong increase in lifetime, the non-adiabatic lifetimes calculated by QDW are longer than experiment by as much as three orders of magnitude. In their work on isotopomers of hydrogen QDW and Yu and Dressler (1994) [5] published extensive summary tables of ab initio non-adiabatic coupling data. We present a technique which allows us to use their summary data to calculate approximate non-adiabatic ab initio lifetimes. The results reconcile our observed lifetimes with the non-adiabatic coupling from those previous ab initio calculations and also provide a detailed quantitative and qualitative understanding of the unusual rotational dependence of the lifetimes of these very highly excited levels. We also test the current technique by calculating the lifetimes of other levels involved in interactions with these EF levels and by calculating the lifetimes of the EF υ = 33 level of H2, for which no corresponding level exists in the Born–Oppenheimer or adiabatic approximations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.