Abstract
ABSTRACT We investigate the formation of Milky Way–mass galaxies using FIRE-2 ΛCDM cosmological zoom-in simulations by studying the orbital evolution of stars formed in the main progenitor of the galaxy, from birth to the present day. We classify in situ stars as isotropic spheroid, thick-disc, and thin-disc according to their orbital circularities and show that these components are assembled in a time-ordered sequence from early to late times, respectively. All simulated galaxies experience an early phase of bursty star formation that transitions to a late-time steady phase. This transition coincides with the time that the inner CGM virializes. During the early bursty phase, galaxies have irregular morphologies and new stars are born on radial orbits; these stars evolve into an isotropic spheroidal population today. The bulk of thick-disc stars form at intermediate times, during a clumpy-disc ‘spin-up’ phase, slightly later than the peak of spheroid formation. At late times, once the CGM virializes and star formation ‘cools down,’ stars are born on circular orbits within a narrow plane. Those stars mostly inhabit thin discs today. Broadly speaking, stars with disc-like or spheroid-like orbits today were born that way. Mergers on to discs and secular processes do affect kinematics in our simulations, but play only secondary roles in populating thick-disc and in situ spheroid populations at z = 0. The age distributions of spheroid, thick disc, and thin disc populations scale self-similarly with the steady-phase transition time, which suggests that morphological age dating can be linked to the CGM virialization time in galaxies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.