Abstract
Born's reciprocal relativity in flat space–times is based on the principle of a maximal speed limit (speed of light) and a maximal proper force (which is also compatible with a maximal and minimal length duality) and where coordinates and momenta are unified on a single footing. We extend Born's theory to the case of curved space–times and construct a reciprocal general relativity theory (in curved space–times) as a local gauge theory of the quaplectic group and given by the semidirect product [Formula: see text], where the non-Abelian Weyl–Heisenberg group is H(1, 3). The gauge theory has the same structure as that of complex non-Abelian gravity. Actions are presented and it is argued why such actions based on Born's reciprocal relativity principle, involving a maximal speed limit and a maximal proper force, is a very promising avenue to quantize gravity that does not rely in breaking the Lorentz symmetry at the Planck scale, in contrast to other approaches based on deformations of the Poincaré algebra, quantum groups. It is discussed how one could embed the quaplectic gauge theory into one based on the U(1, 4), U(2, 3) groups where the observed cosmological constant emerges in a natural way. We conclude with a brief discussion of complex coordinates and Finsler spaces with symmetric and nonsymmetric metrics studied by Eisenhart as relevant closed-string target space backgrounds where Born's principle may be operating.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.