Abstract

The Born-Oppenheimer potential for the $^1\Sigma_g^+$ state of H$_2$ is obtained in the range of 0.1 -- 20 au, using analytic formulas and recursion relations for two-center two-electron integrals with exponential functions. For small distances James-Coolidge basis is used, while for large distances the Heitler-London functions with arbitrary polynomial in electron variables. In the whole range of internuclear distance about $10^{-15}$ precision is achieved, as an example at the equilibrium distance $r=1.4011$ au the Born-Oppenheimer potential amounts to $-1.174\,475\,931\,400\,216\,7(3)$. Results for the exchange energy verify the formula of Herring and Flicker [Phys. Rev. {\bf 134}, A362 (1964)] for the large internuclear distance asymptotics. The presented analytic approach to Slater integrals opens a window for the high precision calculations in an arbitrary diatomic molecule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.