Abstract

This work discusses the design and testing of a new computational spintronics research software. Boris is a comprehensive multi-physics open-source software, combining micromagnetics modeling capabilities with drift-diffusion spin transport modeling and a heat flow solver in multi-material structures. A multi-mesh paradigm is employed, allowing modeling of complex multi-layered structures with independent discretization and arbitrary relative positioning between different computational meshes. Implemented micromagnetics models include not only ferromagnetic materials modeling, but also two-sublattice models, allowing simulations of antiferromagnetic and ferrimagnetic materials, fully integrated into the multi-mesh and multi-material design approach. High computational performance is an important design consideration in Boris, and all computational routines can be executed on graphical processing units (GPUs), in addition to central processing units. In particular, a modified 3D convolution algorithm is used to compute the demagnetizing field on the GPU, termed pipelined convolution, and benchmark comparisons with existing GPU-accelerated software Mumax3 have shown performance improvements up to twice faster.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.