Abstract

In the present work, a diffusion model was suggested to study the growth kinetics of Fe2B layers grown on the AISI 1045 steel by the pack-boriding treatment. The generated boride layers were analyzed by optical microscopy and X-ray diffraction analysis. The applied diffusion model is based on the principle of mass conservation at the (Fe2B/ substrate) interface. It was used to estimate the boron diffusion coefficients of Fe2B in the temperature range of 1123-1273 K. A validation of the model was also made by comparing the experimental Fe2B layer thickness obtained at 1253 K for 5 h of treatment with the predicted value. Basing on our experimental results, the boron activation energy was estimated as 180 kJ mol-1 for the AISI 1045 steel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.