Abstract

Boron and boric acid (BA) can promote osteogenic differentiation and reduce bone resorption, which controls bone growth and maintenance of bone tissue. It has been reported that BA activates PERK-eIF2α signaling to induce cytoplasmic stress granules and cell senescence in human prostate DU-145 cells. However, whether BA can affect osteoclasts formation and LPS-induced inflammatory bone loss, and the role of the PERK-eIF2α pathway in the process, remains unknown. In vitro, RAW264.7 cells were pre-treated with boric acid (BA, 1, 10, 100μmol/L) for 4h, and then incubated with receptor activator of nuclear factor-kappaB ligand (RANKL, 50ng/mL) in the presence or absence of BA for 5days. CCK-8 and tartrate-resistant acid phosphatase (TRAP) were used to examine cell viability, osteoclastogenesis, and bone resorption; quantitative real-time PCR was performed to examine mRNA levels of c-Fos, nuclear factor of activated T cells, cytoplasmic 1 (NFATc1), TRAP, and cathepsin K; western blotting was used to examine protein expressions of glucose-regulated protein 78 (GRP78), protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), phosphorylated PERK (p-PERK), eukaryotic initiation factor 2α (eIF2α), and phosphorylated eIF2α (p-eIF2α). In vivo, lipopolysaccharide (LPS)-induced bone loss model in mice was established, and micro-computed tomography (micro-CT) scanning, bone biochemical analysis, and osteoclastogenic cytokines were detected to evaluate the effect of BA on LPS-induced bone loss. In our vitro results showed that BA treatment for 5days inhibited osteoclasts formation as well as osteoclastic bone resorption in a dose-dependent manner. The expression of osteoclasts marker genes c-Fos, NFATc1, TRAP, and cathepsin K were attenuated by BA. Immunoblotting analysis demonstrated that BA attenuated RANKL-induced PERK-eIF2α pathway activation. The in vivo data indicated that BA significantly prevented lipopolysaccharide (LPS)-induced bone loss. Our findings strongly suggest that BA may be a promising agent for the treatment of bone destructive diseases caused by excessive osteoclastogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call