Abstract
We show that the Borel hierarchy of the class of context free $\omega$-languages, or even of the class of $\omega$-languages accepted by Buchi 1-counter automata, is the same as the Borel hierarchy of the class of $\omega$-languages accepted by Turing machines with a Buchi acceptance condition. In particular, for each recursive non-null ordinal $\alpha$, there exist some ${\bf \Sigma}^0_\alpha$-complete and some ${\bf \Pi}^0_\alpha$-complete $\omega$-languages accepted by Buchi 1-counter automata. And the supremum of the set of Borel ranks of context free $\omega$-languages is an ordinal $\gamma_2^1$ that is strictly greater than the first non-recursive ordinal $\omega_1^{\mathrm{CK}}$. We then extend this result, proving that the Wadge hierarchy of context free $\omega$-languages, or even of $\omega$-languages accepted by Buchi 1-counter automata, is the same as the Wadge hierarchy of $\omega$-languages accepted by Turing machines with a Buchi or a Muller acceptance condition.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.