Abstract

In deep carbonate reservoirs, testing and production with open-hole completion can help release the maximum production capacity. However, because the reservoir is subjected to high in situ stress, if the test pressure differential is too large, the wellbore collapse and instability will occur easily, causing downhole accidents. Therefore, it is necessary to determine the state of the borehole during the open-hole test in the carbonate reservoir and analyze the ultimate test pressure differential accordingly to ensure test safety. Considering the characteristics of open-hole completion, based on the mechanical properties of the carbonate reservoir and the stress distribution around the borehole during testing, a calculation method of the elastic zone, plastic zone, and residual failure zone around the open-hole wellbore was proposed. Regarding actual engineering data, a criterion for the overall stability of the open-hole section had been established from three aspects: the volume ratio of the plastic zone; the failure zone around the wellbore; and the failure angle on the borehole wall. According to this criterion, it is possible to determine the ultimate pressure differential during the open-hole test process and provide theoretical support for designing the open-hole completion test and production parameters for deep carbonate reservoirs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call