Abstract

Survivin is overexpressed in most cancer cells but is rarely expressed in normal adult tissues. It is associated with poor prognosis and resistance to radiation therapy and chemotherapy. In this study, we designed and synthesized borealin-derived small peptides (Bor peptides) to function as survivin-targeting agents for the diagnosis and treatment of cancers. These peptides exhibited binding affinities for recombinant human survivin (Kd = 49.6-193 nM), with Bor65-75 showing the highest affinity (Kd = 49.6 nM). Fluorescence images of fluorescein isothiocyanate-labeled Bor65-75 showed its co-localization with survivin expression in the human pancreatic cancer cell line, MIA PaCa-2. In the WST-1 assay, cell penetrable nona-d-arginine-conjugated Bor65-75 (r9-Bor65-75) inhibited the growth of MIA PaCa-2 cells and MDA-MB-231 cells (89 and 88% inhibition at 10 μM, respectively), whereas it had almost no effect on the human mammary epithelial cell line, MCF-10A, that inherently does not have high survivin expression. Flow cytometry with annexin V and propidium iodide staining revealed that r9-Bor65-75 induced apoptosis in MIA PaCa-2 cells in a dose-dependent manner. An increase in cleaved poly ADP-ribose polymerase protein expression was observed in MIA PaCa-2 cells exposed to r9-Bor65-75 by western blotting, suggesting that r9-Bor65-75 inhibits cell proliferation by inducing apoptosis. In vivo, r9-Bor65-75 significantly suppressed tumor growth in MIA PaCa-2 xenograft mice, without any marked weight loss. Hence, Bor peptides are promising candidates for the development of cancer imaging and anticancer agents targeting survivin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call