Abstract

In gravity irrigation, how water is distributed in the soil profile makes it necessary to study and develop methodologies to model the process of water infiltration and redistribution. In this work, a model is shown to simulate the advancing front in border irrigation based on the one dimensional equations of Barré de Saint-Venant for the surface flow and the equation of Green and Ampt for the flow in a porous medium. The solutions were obtained numerically using a finite difference Lagrangian scheme for the surface flow and the Raphson method for the subsurface flow. The model was validated with data obtained from the literature from an irrigation test and its predictive capacity was compared with another model and showed excellent results. The hydrodynamic parameters of the soil, necessary to obtain the optimal irrigation discharge, were obtained through the solution of the inverse problem using the Levenberg–Marquardt optimization algorithm. Finally, the results found here allow us to recommend that this model be used to design and model border irrigation, since the infiltration equation uses characteristic parameters of the physical soil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.