Abstract

PurposeThis paper aims to better understand the linkage between CO2 emitters and industrial consumers. The border-crossing frequency is applied to calculate the average number of steps that a country takes in relation to the CO2 emissions of its construction industry. The maximum border-crossing frequency and declining speed of CO2 transfer are used to reveal the relationship between the length of production chains and the transfer efficiency of construction products.Design/methodology/approachThis paper maps the CO2 transfer that accompanies global production chains using the frequency of border crossing in the production processes of construction products. As the basic analysis framework, a multi-regional input–output model is adopted to analyse the average border-crossing frequency of CO2 transfer. Additionally, indicators including the maximum border-crossing frequency and declining speed of CO2 transfer are employed. Also, the maximum border-crossing frequency and declining speed of CO2 transfer are used to reveal the relationship between the length of production chains and the transfer efficiency of construction products.FindingsThe results indicate that 85.49% of the CO2 in construction products needs to be processed in at least one country, reflecting that direct trade is the major pattern of transfer of CO2 from primary producers in global construction industries. The maximum border-crossing frequency is 4.88 for 15 economies, meaning that construction products cross the international borders up to 4.88 times before they are absorbed by the final users. The scale of the average border-crossing frequency ranged from 1.16 to 1.87 over 2000–2014, indicating that the original construction products crossed the international borders at least 1.16 times to satisfy the final demand of the consuming countries.Research limitations/implicationsThe data from the economic MRIO tables in the WIOD are only available until 2014, which is a limitation for conducting this research in recent years.Originality/valueThe fragmentation of production is not only reshaping global trade patterns, but also leading to the separation of CO2 emitters and final consumers in production chains. A growing number of studies have focussed on the impact of production fragmentation on accounting for regional and national CO2 emissions, but little research has been done at the scale of a specific industry. The major contribution of this paper lies in mapping the CO2 emissions that accompany the production chains of construction products from the perspectives of both magnitude and length. Additionally, this paper is the first to propose using maximum border-crossing frequency and declining speed to analyse the characteristics of global production chains induced by the final demand of major economies for construction products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call