Abstract
Background This study aims to investigate the effects of 2-aminoethoxydiphenyl borate (2-APB) on aortic clamping-induced lung and kidney tissue oxidation, tissue inflammation, and histological damage in a rat model. Methods A total of 28 adult female Wistar albino rats were randomly allocated to four equal groups: Control group, ischemia-reperfusion group, dimethyl sulfoxide group, and 2-APB group. Animals in the control group underwent median laparotomy. In the remaining groups, supra-celiac aorta was clamped for 45 min and, then, reperfusion was constituted for 60 min. The 2-APB (2 mg/kg) was administered before clamping. The remaining groups received saline (ischemia-reperfusion group) or dimethyl sulfoxide (dimethyl sulfoxide group). Kidney and lung tissue samples were harvested at the end of reperfusion. Results Aortic occlusion caused increased tissue total oxidant status and reduced total antioxidant status and glutathione levels in the ischemia-reperfusion and dimethyl sulfoxide groups. Tissue interleukin-1 beta and tumor necrosis factor-alpha levels, nuclear factor kappa beta activation, and histological damage severity scores were also higher in these groups. The 2-APB treatment eliminated the increase in total oxidant status and the decrease in total antioxidant status and glutathione levels. It also caused a decrease in the interleukin-1 beta levels, although it did not significantly alter the tumor necrosis factor-alpha levels, nuclear factor kappa beta immunoreactivity, and histological damage scores. Conclusion Borate exerted a beneficial antioxidant effect as evidenced by reduced oxidative stress; however, it did not inhibit nuclear factor kappa beta activation and prevent histological damage in supra-celiac aortic clamping-induced kidney and lung injury in rats.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.