Abstract

The widespread industrial use of nitrite in preservatives, colorants, and manufacturing rubber products and dyes increases the possibilities of organ toxicity. Lithium borate (LB) is known as an antioxidant and an oxidative stress reliever. Therefore, this study is aimed at examining the effect of LB on nitrite-induced hepatorenal dysfunction. Twenty-eight male Swiss mice were divided into four equal groups. Group 1, the control group, received saline. Group 2 received LB orally for 5 consecutive days at a dose of 15 mg/kg bw. Group 3, the nitrite group, received sodium nitrite (NaNO2) on Day 5 (60 mg/kg bw intraperitoneally). Group 4, the protective group (LB + NaNO2 group), received LB for 5 days and then a single dose of NaNO2 intraperitoneally on Day 5, the same as in Groups 2 and 3, respectively. Samples of blood and kidney were taken for serum analysis of hepatorenal biomarkers, levels of antioxidants and cytokines, and the expression of genes associated with oxidative stress and inflammation. NaNO2 intoxication increased markers of liver and kidney functions yet decreased reduced glutathione (GSH), superoxide dismutase (SOD), and catalase activities in blood. NaNO2 also increased the expression of tumor necrosis factor (TNF-α), interleukin-1β and interleukin-6 (IL-1β and IL-6). Pre-administration of LB protected mice from oxidative stress, lipid peroxidation, and the decrease in antioxidant enzyme activity. Moreover, LB protected mice from cytokine changes, which remained within normal levels. LB ameliorated the changes induced by NaNO2 on the mRNA of nuclear factor erythroid 2-related factor 2 (Nfr2), heme oxygenase-1 (HO-1), nuclear factor-kappa B (NF-κB), transforming growth factor-beta 2 (TGF-β2), and glutathione-S-transferase (GST) as determined using quantitative real-time PCR (qRT-PCR). These results collectively demonstrate that LB ameliorated NaNO2-induced oxidative stress by controlling the oxidative stress biomarkers and the oxidant/antioxidant state through the involvement of the Nrf2/HO-1 and NF-κB signaling pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.