Abstract

We introduce spectral functions that capture the distribution of OPE coefficients and density of states in two-dimensional conformal field theories, and show that nontrivial upper and lower bounds on the spectral function can be obtained from semidefinite programming. We find substantial numerical evidence indicating that OPEs involving only scalar Virasoro primaries in a c > 1 CFT are necessarily governed by the structure constants of Liouville theory. Combining this with analytic results in modular bootstrap, we conjecture that Liouville theory is the unique unitary c > 1 CFT whose primaries have bounded spins. We also use the spectral function method to study modular constraints on CFT spectra, and discuss some implications of our results on CFTs of large c and large gap, in particular, to what extent the BTZ spectral density is universal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.