Abstract

Recently, bootstrap methods from conformal field theory have been adapted for studying the energy spectrum of various quantum mechanical systems. In this paper, we consider the application of these methods in obtaining the spectrum from the Schr\"odinger equation with periodic potentials, paying particular attention to the Kronig-Penney model of a particle in a one-dimensional lattice. With an appropriate choice of operator basis involving position and momenta, we find that the bootstrap approach efficiently computes the band gaps of the energy spectrum but has trouble effectively constraining the minimum energy. We show how applying more complex constraints involving higher powers of momenta can potentially remedy such a problem. We also propose an approach for analytically constructing the dispersion relation associated with the Bloch momentum of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.