Abstract

In this work we report on a new bootstrap method for quantum mechanical problems that closely mirrors the setup from conformal field theory (CFT). We use the equations of motion to develop an analogue of the conformal block expansion for matrix elements and impose crossing symmetry in order to place bounds on their values. The method can be applied to any quantum mechanical system with a local Hamiltonian, and we test it on an anharmonic oscillator model as well as the (1 + 1)-dimensional transverse field Ising model (TFIM). For the anharmonic oscillator model we show that a small number of crossing equations provides an accurate solution to the spectrum and matrix elements. For the TFIM we show that the Hamiltonian equations of motion, translational invariance and global symmetry selection rules imposes a rigorous bound on the gap and the matrix elements of TFIM in the thermodynamic limit. The bound improves as we consider larger systems of crossing equations, ruling out more finite-volume solutions. Our method provides a way to probe the low energy spectrum of an infinite lattice from the Hamiltonian rigorously and without approximation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.