Abstract
In this paper, we consider the bootstrap procedure for the augmented Dickey–Fuller (ADF) unit root test by implementing the modified divergence information criterion (MDIC, Mantalos et al. [An improved divergence information criterion for the determination of the order of an AR process, Commun. Statist. Comput. Simul. 39(5) (2010a), pp. 865–879; Forecasting ARMA models: A comparative study of information criteria focusing on MDIC, J. Statist. Comput. Simul. 80(1) (2010b), pp. 61–73]) for the selection of the optimum number of lags in the estimated model. The asymptotic distribution of the resulting bootstrap ADF/MDIC test is established and its finite sample performance is investigated through Monte-Carlo simulations. The proposed bootstrap tests are found to have finite sample sizes that are generally much closer to their nominal values, than those tests that rely on other information criteria, like the Akaike information criterion [H. Akaike, Information theory and an extension of the maximum likelihood principle, in Proceedings of the 2nd International Symposium on Information Theory, B.N. Petrov and F. Csáki, eds., Akademiai Kaido, Budapest, 1973, pp. 267–281]. The simulations reveal that the proposed procedure is quite satisfactory even for models with large negative moving average coefficients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.