Abstract
Kernel smoothing is commonly used in spatial point patterns to construct intensity plots. Kernels allow for visually and subjectively inferring on first-order stationarity. Formal objective tests exist for testing first-order stationarity that assume independence of spatial regions. We propose to extend inference for first-order stationary by using bootstrapping in existing hypothesis tests to deal with the violation of independence. More specifically we compare Poisson intensities from bootstrapped spatial quadrat samples, providing a test for first-order stationarity without violating the assumption of independence of the tests. Five hypothesis testing methods are investigated. The choice of grid mesh size and window shape used in these tests is discussed and guidance is provided through testing the power of the tests. The application considers the household locations in rural villages in Northern Tanzania as an unmarked point pattern. A clear effect of the village sizes on the relation between grid mesh size and confidence intervals of bootstrap sampling is shown. We conclude that bootstrapping provides a novel contribution to inference of first-order stationarity for spatial point patterns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.