Abstract

The standard Pearson correlation coefficient, r, is a biased estimator of the population correlation coefficient, ρ(XY) , when predictor X and criterion Y are indirectly range-restricted by a third variable Z (or S). Two correction algorithms, Thorndike's (1949) Case III, and Schmidt, Oh, and Le's (2006) Case IV, have been proposed to correct for the bias. However, to our knowledge, the two algorithms did not provide a procedure to estimate the associated standard error and confidence intervals. This paper suggests using the bootstrap procedure as an alternative. Two Monte Carlo simulations were conducted to systematically evaluate the empirical performance of the proposed bootstrap procedure. The results indicated that the bootstrap standard error and confidence intervals were generally accurate across simulation conditions (e.g., selection ratio, sample size). The proposed bootstrap procedure can provide a useful alternative for the estimation of the standard error and confidence intervals for the correlation corrected for indirect range restriction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.