Abstract

The bootstrap method is a very general resampling procedure for investigating the distributional property of statistics. In this paper, we present two bootstrap methods with the aim of studying the functional canonical components for functional data. The bootstrap I method constructs the bootstrap replications by resampling from the raw data, while the bootstrap II algorithm samples with replacement from the principal component scores. Simulation studies are conducted to examine the performance of the proposed bootstrap methods. The method is also applied to the motion analysis dataset, which consists of the angles formed by the hip and knee of each of 39 children over each child’s gait cycle. Numerical simulations and real data analysis show the good performance of both bootstrap methods for functional canonical correlation analysis. Moreover, as measured by the mean error and mean squared error, the bootstrap II algorithm performs better in approximating sample canonical components than the bootstrap I method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.