Abstract

To be autonomous, intelligent robots must learn the foundations of commonsense knowledge from their own sensorimotor experience in the world. We describe four recent research results that contribute to a theory of how a robot learning agent can bootstrap from the ‘blooming buzzing confusion’ of the pixel level to a higher level ontology including distinctive states, places, objects, and actions. This is not a single learning problem, but a lattice of related learning tasks, each providing prerequisites for tasks to come later. Starting with completely uninterpreted sense and motor vectors, as well as an unknown environment, we show how a learning agent can separate the sense vector into modalities, learn the structure of individual modalities, learn natural primitives for the motor system, identify reliable relations between primitive actions and created sensory features, and can define useful control laws for homing and path-following. Building on this framework, we show how an agent can use self-organizing maps to identify useful sensory features in the environment, and can learn effective hill-climbing control laws to define distinctive states in terms of those features, and trajectory-following control laws to move from one distinctive state to another. Moving on to place recognition, we show how an agent can combine unsupervised learning, map-learning, and supervised learning to achieve high-performance recognition of places from rich sensory input. Finally, we take the first steps toward learning an ontology of objects, showing that a bootstrap learning robot can learn to individuate objects through motion, separating them from the static environment and from each other, and can learn properties useful for classification. These are four key steps in a larger research enterprise on the foundations of human and robot commonsense knowledge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.