Abstract
This article develops bootstrap methods for practical statistical inference in panel data quantile regression models with fixed effects. We consider random-weighted bootstrap resampling and formally establish its validity for asymptotic inference. The bootstrap algorithm is simple to implement in practice by using a weighted quantile regression estimation for fixed effects panel data. We provide results under conditions that allow for temporal dependence of observations within individuals, thus, encompassing a large class of possible empirical applications. Monte Carlo simulations provide numerical evidence the proposed bootstrap methods have correct finite sample properties. Finally, we provide an empirical illustration using the environmental Kuznets curve.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.