Abstract

Risk measures play a key role in financial risk management and are enforced by current legislation to protect financial stability. In particular Value-at-Risk (VaR) and Expected Shortfall (ES) are used to assess the market risks associated with financial assets. These risk measures are frequently applied conditionally to account for the temporal dependence of financial data. To quantify the uncertainty induced by parameter estimation, practitioners often construct confidence intervals by resorting to resampling methods. This thesis provides a theoretical justification for intervals constructed for conditional risk measures. New resampling methods are proposed and validated to quantify the parameter uncertainty around the conditional VaR and ES estimates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.