Abstract
Bootstrap forecast intervals are developed for volatilities having asymmetric features, which are accounted for by fitting EGARCH models. A Monte-Carlo simulation compares the proposed forecast intervals with those based on GARCH fittings which ignore asymmetry. The comparison reveals substantial advantage of addressing asymmetry through EGARCH fitting over ignoring it as the conventional GARCH forecast. The EGARCH forecast intervals have empirical coverage probabilities closer to the nominal level and/or have shorter average lengths than the GARCH forecast intervals. The finding is also supported by real dataset analysis of Dow–Jones index and financial times stock exchange (FTSE) 100 index.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.