Abstract

This paper shows how the bootstrap method can be used to estimate the joint distribution of sample autocorrelations and partial autocorrelations. The exact joint distribution of sample autocorrelations is mathematically intractable and attempts at workable approximations are difficult and rely on special assumptions. The bootstrap offers an accurate solution to this problem without requiring special assumptions and in a way that avoids theoretical difficulties. The bootstrap-estimated joint distributions of the autocorrelations and partial autocorrelations of time series are shown to lead to better ARMA model identification. This is demonstrated using simulated series.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.