Abstract

Bootstrap current calculations with the neoclassical SPBSC and VENUS+δf codes have been performed on experimental Large Helical Device (LHD, NIFS, Japan) configurations with different magnetic axis positions and simplified plasma density and temperature profiles. In this paper, we use experimentally obtained electron density and temperature profiles for the LHD discharges #61863 and #82582 to compute the corresponding magnetohydrodynamic equilibrium states and collisional frequency. An improved collisional operator has been implemented into the VENUS+δf code. The comparison between the measured LHD bootstrap current and that expected from neoclassical simulations is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.