Abstract

We have derived new bootstrap current fraction scalings for systems codes by solving the Hirshman–Sigmar model, which is valid for arbitrary aspect ratios and collision conditions. The bootstrap current density calculation module in the ACCOME code was used with the matrix inversion method without the large aspect ratio assumption. Nine self-consistent MHD equilibria, which cover conventional, advanced and spherical tokamaks with normal or reversed shear, were constructed using numerical calculations in order to compare the bootstrap current fraction values with those of the new model and all six existing models. The Wilson formula successfully predicted the bootstrap current fraction, but it requires current density profile index for the calculation. The new scaling formulas and IPDG accurately estimated the bootstrap current fraction for the normal and weakly reversed shear tokamaks, regardless of the aspect ratio. However, none of the existing models except the Wilson formula can accurately estimate the bootstrap current fraction for the reversed shear tokamaks, which is promising for the advanced tokamak operation mode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call