Abstract
Consider a collection of spatially clustered objects where the clusters are geographically rare. Of interest is estimation of the total number of objects on the site from a sample of plots of equal size. Under these spatial conditions, adaptive cluster sampling of plots is generally useful in improving efficiency in estimation over simple random sampling without replacement (SRSWOR). In adaptive cluster sampling, when a sampled plot meets some predefined condition, neighboring plots are added to the sample. When populations are rare and clustered, the usual unbiased estimators based on small samples are often highly skewed and discrete in distribution. Thus, confidence intervals based on asymptotic normal theory may not be appropriate. We investigated several nonparametric bootstrap methods for constructing confidence intervals under adaptive cluster sampling. To perform bootstrapping, we transformed the initial sample in order to include the information from the adaptive portion of the sample yet maintain a fixed sample size. In general, coverages of bootstrap percentile methods were closer to nominal coverage than the normal approximation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.