Abstract
ABSTRACTTesting homogeneity of multivariate normal mean vectors under an order restriction when the covariance matrices are unknown, arbitrary positive definite and unequal are considered. This problem of testing has been studied to some extent, for example, by Kulatunga and Sasabuchi (1984) when the covariance matrices are known and also Sasabuchi et al. (2003) and Sasabuchi (2007) when the covariance matrices are unknown but common. In this paper, a test statistic is proposed and because of the main advantage of the bootstrap test is that it avoids the derivation of the complex null distribution analytically, a bootstrap test statistic is derived and since the proposed test statistic is location invariance the bootstrap p-value defined logical and some steps are presented to estimate it. Our numerical studies via Monte Carlo simulation show that the proposed bootstrap test can correctly control the type I error rates. The power of the test for some of the p-dimensional normal distributions is computed by Monte Carlo simulation. Also, the null distribution of test statistic is estimated using kernel density. Finally, the bootstrap test is illustrated using a real data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Statistics - Simulation and Computation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.