Abstract

ABSTRACT Sparse functional data are commonly observed in real-data analyzes. For such data, we propose a new classification method based on functional principal component analysis (FPCA) and bootstrap aggregating. Bootstrap aggregating is believed to improve the single classifier. In this paper, we apply this belief to an FPCA based classification, and compare the classification performance with that of the single classifiers. The simulation results show that the proposed method performs better than the conventional single classifiers. We then conduct two real-data analyzes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.