Abstract

A major challenge in computer security is about establishing the trustworthiness of remote platforms. Remote attestation is the most common approach to this challenge. It allows a remote platform to measure and report its system state in a secure way to a third party. Unfortunately, existing attestation solutions either provide low security, as they rely on unrealistic assumptions, or are not applicable to commodity low-cost and resource-constrained devices, as they require custom secure hardware extensions that are difficult to adopt across IoT vendors. In this work, we propose a novel remote attestation scheme, named Boot Attestation, that is particularly optimized for low-cost and resource-constrained embedded devices. In Boot Attestation, software integrity measurements are immediately committed to during boot, thus relaxing the traditional requirement for secure storage and reporting. Our scheme is very light on cryptographic requirements and storage, allowing efficient implementations, even on the most low-end IoT platforms available today. We also describe extensions for more flexible management of ownership and third party (public-key) attestation that may be desired in fully Internet-enabled devices. Our scheme is supported by many existing off-the-shelf devices. To this end, we review the hardware protection capabilities for a number of popular device types and present implementation results for two such commercially available platforms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.