Abstract
Handling unreliable detections and avoiding identity switches are crucial for the success of multiple object tracking (MOT). Ideally, MOT algorithm should use true positive detections only, work in real-time and produce no identity switches. To approach the described ideal solution, we present the BoostTrack, a simple yet effective tracing-by-detection MOT method that utilizes several lightweight plug and play additions to improve MOT performance. We design a detection-tracklet confidence score and use it to scale the similarity measure and implicitly favour high detection confidence and high tracklet confidence pairs in one-stage association. To reduce the ambiguity arising from using intersection over union (IoU), we propose a novel Mahalanobis distance and shape similarity additions to boost the overall similarity measure. To utilize low-detection score bounding boxes in one-stage association, we propose to boost the confidence scores of two groups of detections: the detections we assume to correspond to the existing tracked object, and the detections we assume to correspond to a previously undetected object. The proposed additions are orthogonal to the existing approaches, and we combine them with interpolation and camera motion compensation to achieve results comparable to the standard benchmark solutions while retaining real-time execution speed. When combined with appearance similarity, our method outperforms all standard benchmark solutions on MOT17 and MOT20 datasets. It ranks first among online methods in HOTA metric in the MOT Challenge on MOT17 and MOT20 test sets. We make our code available at https://github.com/vukasin-stanojevic/BoostTrack.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.