Abstract

Despite the significant progress in thermoelectric composites in the last five years, examining the existing main body of publications shows the scarcity of composite systems and limited preparation strategies. Metal-organic frameworks (MOFs) have been extensively studied and have wide applications, however, MOF-related thermoelectric composites have been seldom reported mainly due to their poor electrical conductivity. In this work, we propose a conceptual strategy, in situ growing reaction and subsequent annealing, to achieve zeolitic imidazolate framework 67/carbon nanotube (ZIF-67@CNT) composites with a unique microstructure of MOFs growing on CNT surfaces. The ZIF-67@CNT composites display outstanding and tunable thermoelectric properties. Annealing plays an important role in the composite morphology, structure and thermoelectric performance. Both the electrical conductivity (825.7 ± 12.0 S cm−1) and the figure of merit (ZT = ∼0.02) at room temperature are the highest in the experimental data reported so far for MOF-related materials, and even comparable to the corresponding theoretical values. The results inspire a new insight into MOF-related thermoelectric composites, which should be considered for future design strategies for novel high-performance thermoelectric composites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.