Abstract

Solution-processed colloidal quantum dot light-emitting diodes (QLED) have attracted many attentions with significant progress in recent years. However, QLED devices still face some challenges. The energy barrier between Cd-base quantum dots (QDs) and commonly used hole transport materials is larger than that between QDs and electron transport materials, which leads to the imbalance of carriers in the light emitting layer (EML) and the low performance of QLED devices. Herein, we report a simple strategy to improve the device performance by doping small molecule transport material 4,4′-cyclohexylidenebis[N,N-bis(p-tolyl)aniline] (TAPC) into red CdSe/ZnS QDs. The optimized red QLED devices with TAPC-doped emissive layer at a ratio of 3.2 wt% achieve 20.0 cd/A of maximum current efficiency, 16.6 lm/W of power efficiency and 15.7% of external quantum efficiency, which is 30%, 58% and 33% higher than the control device. The improved performance of devices can be ascribed to the increase of hole current density, decrease of leakage electrons and more balanced quantity of carriers in EML. This work put forward a viewpoint to improve the performance of QLED devices via doping high hole mobility materials into emission layer. • Small molecule hole transport material TAPC is doped into red CdSe/ZnS QDs to enhance the device performance. • The EML solution consists of QD octane solution and TAPC o-xylene solution. • The introduction of TAPC leads to the reduction of leakage electrons and the improvement of hole density.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call