Abstract

An extreme form of pipelining of the Piecewise-Parabolic Method (PPM) gas dynamics code has been used to dramatically increase its performance on the new generation of multicore CPUs. Exploiting this technique, together with a full integration of the several data post-processing and visualization utilities associated with this code has enabled numerical experiments in computational fluid dynamics to be performed interactively on a new, dedicated system in our lab, with immediate, user controlled visualization of the resulting flows on the PowerWall display. The code restructuring required to achieve the necessary CPU performance boost, as well as the parallel computing methods and systems used to enable interactive flow simulation are described. Requirements for these techniques to be applied to other codes are discussed, and our plans for tools that will assist programmers to exploit these techniques are briefly described. Examples showing the capability of the new system and software are given for applications in turbulence and stellar convection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.