Abstract

AbstractThe Li metal battery is attracting more and more attention in the field of electric vehicles because of its high theoretical capacity and low electrochemical potential. But its inherent disadvantages including uncontrolled lithium dendrites, high chemical activity, and large volume changes hold back the large‐scale application of stable Li metal anodes. Recently, various computational studies have been used to facilitate the rationalization of experimental observed phenomenon. In this review, the progress of molecular dynamics simulations in Li metal batteries is highlighted. Molecular dynamics simulations can predict how selected atoms in different systems of Li metal battery will move over time based on a general model of the physics governing interatomic interactions. The analysis of the transport structure of Li ions, the electrochemical process at electronic, atomic, or molecular level, the Li+ transport mechanism, and the Li deposition behavior are described in detail. Some suggestions are also made about the further potential of molecular dynamics simulations do in Li metal batteries are also made.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.