Abstract
Synthesis of air-stable and high-performance single-molecule magnets (SMMs) is challenging. Here, a heptadentate pentapyridyldiamine (BPA-TPA) ligand and fine-tuned axial phenoxy ligands are used to synthesize two triangular dodecahedral Dy(III) complexes [Dy(BPA-TPA)(4-methoxy-PhO)](BPh4)2·3CH2Cl2 (4) and [Dy(BPA-TPA)(2,4-dimethyl-PhO)](BPh4)2·0.85CH2Cl2 (5). Both complexes have high effective barriers exceeding 400 K and magnetic hysteresis up to 8 K, which is ascribed to one strong and short Dy-O bond combined with seven weak Dy-N bonds. Ab initio calculations reveal the thermally activated quantum tunneling of magnetization through the first excited Kramers doublet, due to the presence of a strong axial Dy-O crystal ligand. Substitution of the phenoxy ligand leads to more constrained vibrations, improving the magnetic hysteresis behavior for 5.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.