Abstract
Heteroatom doping is identified as an effective strategy to enhance the electrochemical performance of hard carbon. However, the effect of oxygen on biomass-based hard carbon is usually ignored. Herein, oxygen-doped carbon microspheres are fabricated with a lignin-based oxygen source, endowing the carbon microspheres with a high capacitance-controlled capacity and stable cycling performance. In addition, the quality of oxygen doping and microsphere morphology is regulated by using different ratios of lignin. As an anode for sodium-ion batteries, the optimal oxygen-doped carbon microspheres can deliver a high reversible capacity (310.4 mAh g–1 at 25 mA g–1) and long life span. Moreover, when paired with NaNi1/3Fe1/3Mn1/3O2, the full cells can display a capacity of 313.3 mAh g–1 at 25 mA g–1 and an excellent rate performance (218.7 mAh g–1 at 500 mA g–1). Based on first principles, the oxygen functional groups provided by lignin exhibit a strong Na+ adsorption capability, demonstrating that oxygen functional groups, especially C═O, play a pivotal role in the capacitance-controlled process. This work presents an idea for the material design and heteroatom doping of high-performance sodium-ion battery anode materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.