Abstract

AbstractAlkyl chains are basic units in the design of organic semiconductors for purposes of enhancing solubility, tuning electronic energy levels, and tailoring molecular packing. This work demonstrates that the carrier mobilities of indeno[1,2‐b]fluorene‐6,12‐dione (IFD)‐based semiconductors can be dramatically enhanced by the incorporation of sulfur‐ or nitrogen‐linked side chains. Three IFD derivatives possessing butyl, butylthio, and dibutylamino substituents are synthesized, and their organic field‐effect transistors (OFET) are fabricated and characterized. The IFD possessing butyl substituents exhibits a very poor charge transport property with mobility lower than 10−7 cm2 V−1 s−1. In contrast, the hole mobility is dramatically increased to 1.03 cm2 V−1 s−1 by replacing the butyl units with dibutylamino groups (DBA‐IFD), while the butylthio‐modified IFD (BT‐IFD) derivative exhibits a high and balanced ambipolar charge transport property with the maximum hole and electron mobilities up to 0.71 and 0.65 cm2 V−1 s−1, respectively. Moreover, the complementary metal–oxide–semiconductor‐like inverters incorporated with the ambipolar OFETs shows sharp inversions with a maximum gain value up to 173. This work reveals that modification of the aromatic core with heteroatom‐linked side chains, such as alkylthio or dialkylamino, can be an efficient strategy for the design of high‐performance organic semiconductors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.