Abstract

Although a range of noble metal catalysts, including Ru, Rh, Pd, Pt, and Au, have been developed for efficient H2 generation upon NH3BH3 hydrolysis at room temperature, this is a highly urgent need for exploring earth-abundant metal nanocatalysts for H2 generation upon NH3BH3 hydrolysis. Herein, a NaBH4 reduction strategy was developed to boost the catalytic performance of NiMoO4 nanorods in H2 generation upon NH3BH3 hydrolysis. Indeed, the pristine NiMoO4 nanorods were catalytically inert in NH3BH3 hydrolysis. Significantly, the reduced NiMoO4 nanorods presented excellent catalytic activity in H2 generation upon NH3BH3 hydrolysis, with a turnover frequency (TOF) of 31.2 L(H2)·gcat-1·h-1. Interestingly, the TOF of NH3BH3 hydrolysis over reduced NiMoO4 nanorods significantly increased from 31.2 to 53.6 L(H2)·gcat-1·h-1 under 0.3 M NaOH. The boosting catalytic performance of NiMoO4 nanorods via NaBH4 reduction in H2 generation might be attributed to the higher content of Oads and the formation of nickel boride in the reduced NiMoO4 nanorods. In this work, NH3BH3 hydrolysis over reduced NiMoO4 nanorods was not only used for safe H2 generation but also for its in situ tandem hydrogenation in organic chemistry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call