Abstract

In this work, we reported a novel polyphosphide strategy for the synthesis of phosphorus doped Pd (P-Pd) using red phosphorus as the starting material at quasi-ambient conditions. Polyphophide anions, as the key reaction intermediates, served as the reducing agent and phosphorus source to modulate the surface electronic structure of Pd. The P-Pd obtained exhibited topmost CO tolerance and electrocatalytic activity to formic acid oxidation among the state-of-arts reports. The mass activity and turnover frequency of P-Pd reached 4413 mA mg−1Pd and 16.04 s−1 at 0.8 V, which were 23.7 and 6.4 times that of commercial Pd/C respectively. After 1000 repeated cycles, 82% initial activity was reserved. Combined with the electrochemical analysis and the density functional theory calculation, the boosted electrochemical performances can be attributed to the size and electronic effects induced by the P doping, which increase the surface actives sites, inhibit the adsorption of CO and change the reaction pathway to favorable CO2 route. A full cell was also assembled to demonstrate the practical potential of the P-Pd, which showed a maximum power density of 21.56 mW cm−2. This polyphophide-based reaction route provides a new strategy for the preparation of efficient and durable phosphorus doped alloys for electrocatalysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call